Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Sessilifoliamine A and sessilifoliamide J: new alkaloids from Stemona sessilifolia

Yukio Hitotsuyanagi, Erika Takeda, Haruhiko Fukaya, Koichi Takeya*

School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan

ARTICLE INFO

 $A \hspace{0.1in} B \hspace{0.1in} S \hspace{0.1in} T \hspace{0.1in} R \hspace{0.1in} A \hspace{0.1in} C \hspace{0.1in} T$

crystallography.

Article history: Received 6 September 2008 Revised 7 October 2008 Accepted 10 October 2008 Available online 14 October 2008

Keywords: Sessilifoliamine A Sessilifoliamide J Stemona sessilifolia X-ray crystallography

Plants belonging to the genus *Stemona* (family Stemonaceae) are noted for producing a series of alkaloids with unique structures, most of which are characterized by incorporating a pyrrolo[1,2-a]azepine core.¹⁻³ Of the genus *Stemona* plants, *Stemona japonica* (Blume) Miq., *S. tuberosa* Lour., and *S. sessilifolia* (Miq.) Miq. have been used in China and Japan as an insecticide and also as a remedy for cough, and their biological activities are considered to be related to their alkaloid components.^{4–6} In our studies on the chemical constituents of *S. sessilifolia*,⁷ we isolated two new alkaloids, sessilifoliamine A (1) and sessilifoliamide J (2), with novel alkaloid skeletons (Fig. 1). The present Letter describes their isolation and structure determination.

From 15 kg of the roots of *Stemona sessilifolia*, 8 kg of a crude MeOH extract was obtained, from which 300 g of a neutral/acidic fraction and 250 g of a basic fraction were prepared.⁷ By chromato-

Figure 1. Structures of sessilifoliamine A (1) and sessilifoliamide J (2).

graphic separation, those two fractions gave sessilifoliamine A (1, 0.9 mg, 0.000006%) and sessilifoliamide J (**2**, 2.5 mg, 0.000017%), respectively.

© 2008 Elsevier Ltd. All rights reserved.

Two new alkaloids, sessilifoliamine A and sessilifoliamide I, having novel alkaloid skeletons were isolated

from the roots of Stemona sessilifolia (Miq.) Miq. (Stemonaceae). The structure of sessilifoliamine A was

determined by interpretation of its spectroscopic data and that of sessilifoliamide J by X-ray

Sessilifoliamine A (1), $[\alpha]_D^{25}$ +145 (*c* 0.05, CHCl₃), was obtained as an amorphous solid. Its molecular formula was determined to be $C_{21}H_{27}NO_6$ from the $[M+Na]^+$ peak at m/z 412.1709 (calcd for C₂₁H₂₇NO₆Na, 412.1736) in the HRESIMS. The UV spectrum (MeOH) showed absorption bands at 206 nm (log ε 4.16) and 278 nm (log ε 2.80), and the IR spectrum indicated the presence of carbonyl groups (1767 and 1749 cm⁻¹). Its ¹H NMR spectrum showed the presence of two secondary methyl groups ($\delta_{\rm H}$ 1.29 and 1.37), one allylic methyl group ($\delta_{\rm H}$ 1.89), and four heteroatom-substituted methine protons ($\delta_{\rm H}$ 3.41, 3.45, 4.94, and 6.23) (Table 1). Its ¹³C NMR spectrum showed 21 signals caused by three methyls, six methylenes, six methines, and six quaternary carbons, including three carbonyl carbons. Analysis of the ¹H–¹H COSY and HMQC spectra revealed the presence of three molecular fragments: fragment A of an eight-carbon chain (C-9a-C-1-C-2-C-3-C-14-C-15-C-16-C-18) in which C-18 was a secondary methyl and C-3, C-9a, and C-14 were heteroatom-substituted methines, fragment B of a three-carbon chain (C-10-C-11-C-13) in which C-13 was a secondary methyl, and fragment C of a two-carbon chain (C-7-C-8) comprising two methylenes (Fig. 2). As regards the relations between these three carbon-chain fragments, HMBC data revealed the nature of the other skeleton atoms which join these fragments. Correlations from H-1a, H-7a, H-7b, H-8a, H-8b, H-9a, H-10a, H-10b, and H-11 to C-9 (δ_c 87.0) indicated that C-9, an oxygenbearing quaternary carbon, was connected to fragments A, B, and C at C-9a, C-10, and C-8, respectively.

The strong UV absorption bands mentioned above and HMBC correlations from H-5 and H₃-21 to C-6 ($\delta_{\rm C}$ 158.6), C-19 ($\delta_{\rm C}$ 127.4), and C-20 ($\delta_{\rm C}$ 173.5) suggested that one methine (C-5),

^{*} Corresponding author. Tel.: +81 42 676 3007; fax: +81 42 677 1436. *E-mail address*: takeyak@ps.toyaku.ac.jp (K. Takeya).

^{0040-4039/\$ -} see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.10.042

Table 1		
NMR data for sessilifoliamne A (1) and sessilifoliamide I (2) in	CDCl ₃

Position	Sessilifoliamne A (1)			Sessilifoliamide J (2)		
		$\delta_{H}{}^{a,b}$	$\delta_{C}^{c,d}$		$\delta_{H}{}^{a,e}$	$\delta_{C}^{c,f}$
1	a	2.10 (m)	26.9	a	2.16 (m)	27.3
	b	1.35 (m)		b	1.53 (m)	
2	a	1.79 ^g	28.4	a	2.11 (m)	24.3
	b	1.47 (m)		b	1.82 (m)	
3		3.41 (ddd, 11.9, 9.1, 4.3)	67.7		4.60 (td, 7.7, 4.0)	57.7
5		6.23 (d-like, 1.7)	94.4			
6			158.6			168.4
7	a	2.72 ^g	21.0	a	2.70 (ddd, 18.3, 6.4, 3.8)	28.7
	b	2.27 (td, 13.5, 2.5)		b	2.40 (ddd, 18.3, 11.0, 6.4)	
8	a	2.01 (ddd, 13.1, 4.9, 2.5)	43.6	а	2.26 (ddd, 13.0, 11.0, 6.4)	33.7
	b	1.80 ^g		b	1.92 (ddd, 13.0, 6.4, 3.8)	
9			87.0			81.3
9a		3.45 (t. 8.4)	62.8		3.80 (dd. 10.3, 5.9)	65.4
10	a	2.57 (dd, 14.2, 11.7)	34.5	a	2.45 (dd, 13.6, 10.9)	35.5
	b	1.70 (dd, 14.2, 6.4)		b	1.66 ^g	
11		2.78 (m)	35.6		2.77 (m)	35.3
12			179.0			177.7
13		1.37 (d. 7.4, 3H)	19.0		1.34 (d. 7.2, 3H)	16.9
14		4.94 (ddd, 10.5, 9.1, 5.3)	77.5		4.86 (ddd, 10.6, 5.5, 4.0)	78.5
15	a	2.50 (ddd, 12.3, 8.3, 5.3)	35.8	a	2.35 (ddd, 12.8, 8.6, 5.5)	32.4
	b	1.52 (m)		b	1.67 ^g	
16		2.70 ^g	35.0		2.65 (ddg, 12.2, 8.6, 7.1)	35.5
17			178.9			178.7
18		1.29 (d. 7.0. 3H)	14.8		1.27 (d. 7.1. 3H)	14.9
19			127.4			
20			173.5			
21		1.89 (d, 1.7, 3H)	8.7			

^a Chemical shifts referenced to residual CHCl₃ (7.26 ppm); J-values given in Hz in parentheses.

^b Recorded at 600 MHz.

^c Chemical shifts referenced to CDCl₃ (77.03 ppm).

^d Recorded at 150 MHz.

^e Recorded at 500 MHz

^f Recorded at 125 MHz.

^g Multiplicity patterns were unclear due to signal overlapping.

Figure 2. ¹H-¹H COSY and selected HMBC correlations for sessilifoliamine A (1).

two quaternary sp² carbons (C-6 and C-19), and a carbonyl carbon (C-20) constructed a 2-methyl-2-butenolide ring. The HMBC correlations from H-7a and H-7b to C-5, C-6, and C-19, and from H-8a and H-8b to C-6 indicated that C-7 of fragment C was connected to C-6, the β -position of the butenolide ring. On the basis of the chemical shift values of the signals of C-3 ($\delta_{\rm C}$ 67.7), C-5 ($\delta_{\rm C}$ 94.4), and C-9a ($\delta_{\rm C}$ 62.8), and of the HMBC correlations from H-3 to C-5, from H-5 to C-9a, and from H-9a to C-5, the nitrogen atom was shown to be connected to fragment A at C-3 and C-9a, and to the butenolide ring at C-5.

The HMBC correlations from H-10a, H-10b, H-11, and H₃-13 to C-12 (δ_{C} 179.0) and from H-15a, H-16, and H₃-18 to C-17 (δ_{C} 178.9)

placed the two γ -lactones between C-12 and C-9, and between C-17 and C-14. From these observations, alkaloid **1** was concluded to possess the gross structure as shown in Figure 2.

The relative stereochemistry of **1** was established by the NOESY experiments (Fig. 3). The correlations between H-3/H-10a, H-5/H-7b, and H-7b/H-10b indicated that H-3, H-5, and the C-10 methylene group were α -oriented, whereas those between H-2b/H-9a, H-8b/H-9a, and H-8a/H₃-13 indicated that H-9a was β -oriented and that the C-8 methylene group and the C-13 methyl group were in a *cis* relationship. A large *J*-value (9.1 Hz) between H-2a/H-15a, H-2b/H-14, and H-3/H-15b indicated that H-3 and H-14 were arranged in an antiperiplanar orientation with the C-2 and C-15 carbons being gauche to each other. The correlation between H-14/H-16 revealed a *cis* relationship between H-14 and H-16.

Thus established stereochemistry of **1** agreed with the results of the molecular modeling studies. In the energetically most stable conformation of **1** found in the Monte Carlo conformational search,⁸ the distances between the relevant protons, involved in the above-mentioned diagnostic NOE correlations in **1**, were all less than 2.9 Å, the spacing reasonable for producing NOE crosspeaks (Fig. 3). Accordingly, alkaloid **1** was determined to have the ($3R^*$, $5R^*$, $9R^*$, $9aR^*$, $11S^*$, $14R^*$, $16R^*$) relative configuration.

the $(3R^*, 5R^*, 9R^*, 9aR^*, 11S^*, 14R^*, 16R^*)$ relative configuration. Sessilifoliamide J (**2**), $[\alpha]_D^{26} -73$ (*c* 0.13, CHCl₃), was obtained as colorless needles, mp 156–159 °C (H₂O/MeOH). Its molecular formula was determined to be $C_{17}H_{23}NO_5$ from the $[M+H]^*$ peak at m/z 322.1666 (calcd for $C_{17}H_{24}NO_5$, 322.1654) in the HRESIMS. Its UV spectrum showed no strong absorption maximum between 200 and 400 nm, and the IR spectrum indicated the presence of γ -lactone (1771 cm⁻¹) and amide (1636 cm⁻¹) carbonyl groups. Its ¹H NMR spectrum showed the presence of two secondary

Figure 3. Most stable conformation of **1** found in the Monte Carlo conformational search with the observed key NOE correlations (arrows).

Figure 4. ¹H–¹H COSY and selected HMBC correlations for sessilifoliamide J (2).

methyl groups ($\delta_{\rm H}$ 1.27 and 1.34) and three heteroatom-substituted methine protons ($\delta_{\rm H}$ 3.80, 4.60, and 4.86) (Table 1). Its ¹³C NMR spectrum showed 17 signals caused by two methyls, six

Figure 6. Structure of croomine (3) from Croomia heterosepala.¹⁰

methylenes, five methines, and four quaternary carbons, including three carbonyl carbons. Analysis of the ${}^{1}H{-}{}^{1}H$ COSY and HMQC spectra disclosed the presence of three molecular fragments A, B, and C, which had the same characteristics as those from **1** (Fig. 4). Although the HMBC experiments revealed that **2** possessed generally similar structural features as **1**, the HMBC correlations from H-3 and H-9a to C-6 (δ_{C} 168.4) indicated that C-3, C-9a, and the C-6 carbonyl carbon were connected to the nitrogen atom, and the HMBC correlations from H-7a, H-7b, H-8a, and H-8b to C-6 indicated that the C-6 carbonyl carbon was connected to fragment C at C-7. From these observations, the gross structure of **2** was determined to be as shown in Figure 4.

The relative stereochemistry of **2** was established by X-ray crystallographic analysis (Fig. 5) to be $(3R^*, 9R^*, 9aR^*, 11S^*, 14R^*, 16R^*)$ as shown in Figure 1.⁹

Sessilifoliamine A (1) and sessilifoliamide J (2) have novel alkaloid skeletons. These skeletons are related to that of croomine (3) (Fig. 6), previously isolated from *Croomia heterosepala* (Baker) Okuyama (Stemonaceae).¹⁰ In 1, a 2-methyl-2-butenolide segment fuses 3 at its positions 5 and 6, whereas in 2, the seven-membered azepane ring of 3 is contracted to a six-membered piperidin-2-one ring.

References and notes

- 1. Pilli, R. A.; Rosso, G. B.; de Oliveira, M. C. F.. In *The Alkaloids*; Cordell, G. A., Ed.; Elsevier Inc.: San Diego, 2005; Vol. 62, pp 77–173.
- Guo, A.; Jin, L.; Deng, Z.; Cai, S.; Guo, S.; Lin, W. Chem. Biodivers. 2008, 5, 598– 605.
- Lin, L.-G.; Li, K. M.; Tang, C.-P.; Ke, C.-Q.; Rudd, J. A.; Lin, G.; Ye, Y. J. Nat. Prod. 2008, 71, 1107–1110.
- Sakata, K.; Aoki, K.; Chang, C.-F.; Sakurai, A.; Tamura, S.; Murakoshi, S. Agric. Biol. Chem. 1978, 42, 457–463.
- Brem, B.; Seger, C.; Pacher, T.; Hofer, O.; Vajrodaya, S.; Greger, H. J. Agric. Food Chem. 2002, 50, 6383–6388.
- Chung, H.-S.; Hon, P.-M.; Lin, G.; But, P. P.-H.; Dong, H. Planta Med. 2003, 69, 914–920.

Figure 5. ORTEP representation of sessilifoliamide J (2).

- 7. (a) Hitotsuyanagi, Y.; Hikita, M.; Oda, T.; Kakuta, D.; Fukaya, H.; Takeya, K. Tetrahedron **2007**, 63, 1008–1013; (b) Hitotsuyanagi, Y.; Hikita, M.; Nakada, K.; Fukaya, H.; Takeya, K. *Heterocycles* **2007**, *71*, 2035–2040.
- 8. A Monte Carlo conformation search was performed using the Macromodel 8.1 implementation of the MMFF force field and using the Maestro 5.1 graphical interface. A total of 20000 search steps were performed.
- 9. Crystallography of **2**: $C_{17}H_{23}NO_5$, M = 321.36, $0.67 \times 0.08 \times 0.06$ mm, monoclinic, space group *P*₂₁, *a* = 9.280(3) Å, *b* = 5.8995(17) Å, *c* = 15.080(4) Å, *β* = 98.943(3)°, *V* = 815.5(4) Å³, *Z* = 2, *D*_X = 1.309 Mg m⁻³, Mo Kα radiation (λ = 0.71073 Å), μ = 0.096 mm⁻¹, *T* = 90 K, 8793 measured reflections, 3644 independent reflections [$R_{int} = 0.0449$], R1 = 0.0403 (3511 reflections with $[I > 2\sigma(I)]$, wR2 = 0.1123 (3644 reflections), S = 1.049. The structure was solved by direct methods using SHELXS-97,¹¹ and refined by full-matrix least-

squares on F^2 using SHELXL-97.¹² Crystallographic data for compound **2** reported in this Letter have been deposited with the Cambridge Crystallographic Data Centre under the reference number CCDC 700830. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/data_request/cif, or by e-mailing to data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

- 10. Noro, T.; Fukushima, S.; Ueno, A.; Miyase, T.; Iitaka, Y.; Saiki, Y. Chem. Pharm. Bull. **1979**, 27, 1495–1497. Sheldrick, G. M. SHELXS-97: Program for the Solution of Crystal Structures;
- 11. University of Göttingen: Göttingen, Germany, 1997.
- 12. Sheldrick, G. M. SHELXL-97: Program for the Refinement of Crystal Structures; University of Göttingen: Göttingen, Germany, 1997.